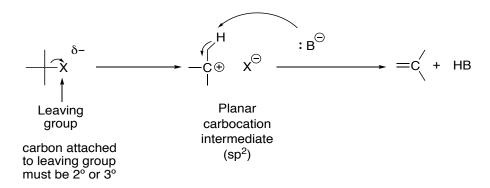
1

Recall:

Elimination reaction


2 Types of Mechanisms: E₁ and E₂

E₂ **Reaction** (E=Elimination):

- Rate depends on two concentrations
- Stereospecific
- Concerted (bonds being formed and broken at the same time)
 - No intermediate
- follows Zaitsev Rule: most substituted alkene will be the major product
- Anti-periplanar geometry
- 1°, 2°, 3°, but especially primary and secondary

E₁ **Reaction**:

- Rate depends on one concentration
- Not concerted (carbocation intermediate)
- Not stereospecific, needs high temoeratures
- Favored with leaving group being 3°

Example:

Dehalogenation

Example 1:

Example 2: Dehydrohalogenation

Bulky base (steric crowding)

H₃C + KI + HO + KI + HO

3) Dehydration

$$\begin{array}{c|c}
 & OR \\
-C-C \\
+ & | \\
 & H_2SO_4
\end{array}
\qquad
\begin{array}{c}
 & C=C \\
\hline
 & H-OR \\
\hline
 & E_1 \text{ Or } E_2
\end{array}$$

Bredt Rule: Bridged alkenes are only okay if one of the bridges is a "zero" (0) bridge in small rings <9

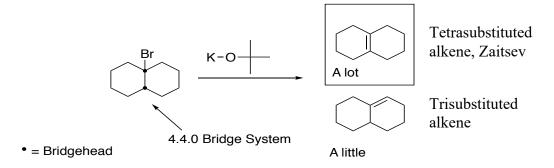
Dehydration

-OH and -OR are not leaving groups, but H-OH and H-OR are okay (they can leave favoured by heat or strong acid)

Dehydrohalogenation

Zaitsev Rule: Get the more substituted alkene

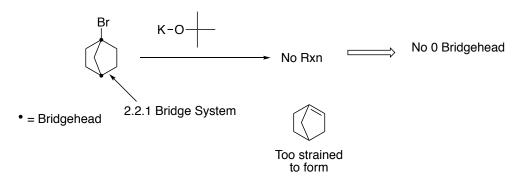
X= CI, Br, I

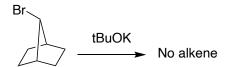

Example 1:

Example 2:

$$\begin{array}{c|c}
& & K^{\oplus} O^{\ominus} \\
\hline
& & E_1
\end{array}$$
No Rxn

need hydrogen on adjacent carbon for loss of HBr


Example 3:


Example 4:

Example 5:

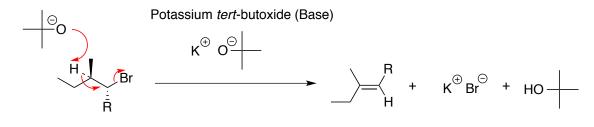
Example 6:

Example 7:

(too unstable – will not form according to Bredt's rule

Example 8:

Example 9:


$$\begin{array}{c|c} & \text{tBuOK} & \text{Does not form} \\ \hline \\ \text{CI} & & \\ \hline \end{array}$$

Example 10 A:

Potassium tert-butoxide (Base)

H and Br need to be in "Anti" configuration (anti-periplanar)

Example 10 B: Start with different stereochemistry get different product stereochemistry (a diastereomer)

H and Br need to be in "Anti" configuration (anti-periplanar)

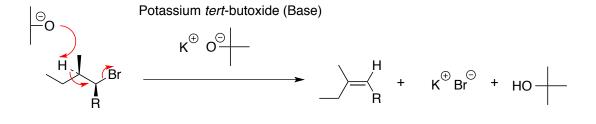
Example 11:

The *tert*-butyl group must be placed in the equatorial position

Dehydration

-OH and -OR are not leaving groups, but H-OH and H-OR are okay (they can leave favoured by heat or strong acid)

Example 1:


Example 2:

Example 3:

Example 4:

$$\begin{array}{c|c}
& & K^{\oplus} O^{\ominus} \\
\hline
& & E_{1}
\end{array}$$
No Rxn

Example 5:

H and Br need to be in "Anti" configuration (anti-periplanar)

Example 6:

(too unstable - will not form according to Bredt's rule

Elimination vs Substitution

Substitution	VS.	Elimination
- Low Temp		- High Temp (Heat)
- Weaker Base		- Stronger Base
- Dilute H ⁺		- Conc. H ⁺
- Leaving group on 1° carbon		- 2°, 3°
- Small Nucleophile		- Large Nucleophile

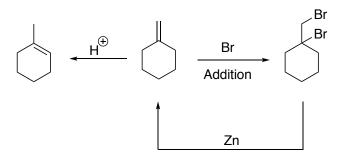
Note: HO-H, HOR are leaving groups but requires strong acid (H⁺) such as H₂SO₄

Example 7:

$$\begin{array}{c|c} & & & & \\ & &$$

Example 8A: bulky nucleophiles/bases favor elimination

$$\begin{array}{c|c}
 & K^{\oplus} \circ \stackrel{\bigcirc}{\longrightarrow} \\
\hline
 & E_2 \\
\hline
 & A \text{ lot} \\
\hline
 & K^{\oplus} \circ \stackrel{\bigcirc}{\longrightarrow} \\
\hline
 & S_N 2 \\
\hline
 & A \text{ little}$$


Example 8B: small nucleophiles/bases favor substitution

Example 9A:

$$E_1$$
 OCH₃ H_2SO_4 + HOCH₃ vs.

$$S_N1$$
 OCH₃ CH₃CH₂OH OCH₂CH₃ + HOCH₃

Example 9B:

Due to mechanism of Zn, the double bond is stuck at less substituted end.

Double bond can go to more substituted if it is left in acid

12

Polymers

Poly = many

Meros = parts

Natural Polymers (Biopolymers)

- 1. Polysaccharides
 - polymers of sugars (e.g. cellulose, glycogen)
- 2. Proteins and peptides
 - polymers of amino acids
- 3. Nucleic acid polymers (DNA and RNA)
 - polymers of nucleotides
- 4. Fats and polyketides
 - polymers of fatty acids
- 5. Polyisoprenoids/terpenoids
 - polymers of isoprene (i. e. natural compound rubber)

Recall:

Addition Reactions of Alkenes (Markovnikov addition)

For alternate regiochemistry (addition of Br onto the less substituted carbon) need dialkyl peroxide (radical addition)

$$= \xrightarrow{\mathsf{H}-\mathsf{Br}} \xrightarrow{\mathsf{Br}} = \xrightarrow{\mathsf{CH_3 Br} \atop \mathsf{HC-CH_2}}$$

Examples of peroxides

Hydrogen peroxide

HO-OH

Radical mechanism

Initiation
$$\rightarrow 0.000$$
 $\rightarrow 0.000$ $\rightarrow 0$

O-Br bond is not strong as both atoms are electron withdrawing elements. Therefore, tert-butyl alcohol is formed

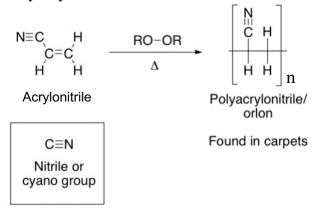
Propagation Radical forms on that carbon with the maximum number of alkyl groups attached: radicals are electron deficient and electron-donating substituents stabilize them

Polyethylene

Mechanism:

Termination
$$R' + R'_1 \longrightarrow R-R_1$$

Polyvinyl chloride


$$\begin{array}{c|c}
CI & H & RO-OR \\
C = C & \Delta & H & \Pi
\end{array}$$
Vinyl chloride

Polyvinyl chloride
(PVC)

Such polymers containing chloride can form HCl if decomposed.

Polypropylene

Polyacrylonitrile

Polyacrylonitrile can form HCN if it is heated to decomposition.

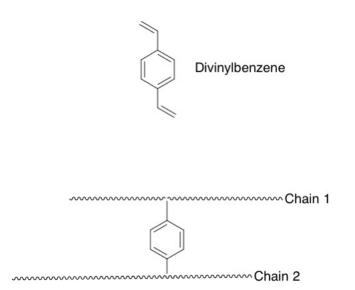
Polystyrene

Example: Mechanism of polystyrene formation

Teflon (Polytetrafluoroethylene)

Teflon is very unreactive and does not adhere substances Many polymers degrade into their components if heated enough, and can further decompose.

Copolymers


Copolymers are composed of two different subunits.

Cross-linked polymers

Example: Mechanism of polystyrene formation

Short-hand for mechanism of polystyrene formation

Divinyl benzene can be added as a cross-linker so chains link on both of its double bonds. This make the copolymer more solid (as you encounter in many products) – typically about one part in 100 to one part in 6 of divinylbenzene may be added

